## F Ciências Experiment paraffin vs "Used Cooking ULisboa Oil waste" candle - Combustion

## Materials




Fig. 1 Overview of the experimental set-up

## Experimental procedure:

i) Density measurements

- choose a beaker and register its weight;
- fill the beaker with UCO and register its volume;
- weight the beaker filled with UCO and register its value;
- determine UCO density (kg/L).
ii) UCO candle manufacturing
- check if the UCO has any suspended materials that needs to be filtered out;
- Pour 100 mL of UCO to the 250 mL beaker, in order to heat up the content using the microwave for 1 minute;
- add the chemical compound to the UCO and with the help of a stirring rod, stir until the mix is homogeneous, fill the candle recipient with cotton wick and let it rest for several minutes;
- weight the candle and register its value;
- 1 candle will be used for the dome, other to outside dome combustion.
iii) Ambient conditions
- start measurements with the low-cost equipment to observe ambient conditions prior to combustion, register ambient temperature, $\mathrm{CO}_{2}$, pressure, humidity.
iii) Combustion
- lit the candles and continue the data monitoring until the candles burn-out;
- Let 1 h combustion outside the dome register the final candle weight after burn-out.
iv) Data
- download data of dome interior regarding temperature, pressure, humidity and $\mathrm{CO}_{2}$ concentration.


## Analysis:

i) Compare the UCO density with water ( $1 \mathrm{~kg} / \mathrm{L}$ ) and diesel ( $0.845 \mathrm{~kg} / \mathrm{L}$ ). Try to find in a google search a value for UCO register this value and the reference you retrieve the information from. Comment.
ii) Relate the amount of water sucked in the dome and the air inside the dome (assume air $79 \% \mathrm{~N}_{2} 21 \% \mathrm{O}_{2}$ ).
iii) Represent graphs with the evolution of temperature, pressure, humidity and $\mathrm{CO}_{2}$ concentration along time and discuss the evolution relating with beginning and end of combustion.
iv) At the time the candle burns-out, the volume of oxygen consumed is known and also the mass of CxHy consumed.

Estimate the Air Fuel ratio (A/F)
v) Find the ratio Carbon $(x) / H y d r o g e n ~(y) ~ o f ~ t h e ~ c a n d l e s ~ b y ~ m a s s ~ b a l a n c e ~ a n d ~ c o m b u s t i o n ~$ products knowledge, in this case $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. Compare with the literature values for UCO $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{0.14 \mathrm{n}}$ and parafine $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.

Consider the final temperature, pressure, humidity ( $\phi=\mathrm{pH}_{2} \mathrm{O} / \mathrm{p}_{\text {sat }}$ ) and $\mathrm{CO}_{2}$ concentration at the end of combustion. Also consider, Perfect gas law $\mathrm{pV}=\mathrm{nRT}$, Dalton's law of partial pressure, $\mathrm{H}_{2} \mathrm{O}$ tables provided in Appendix and the following equations,
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}+\mathrm{a}\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)->\mathrm{xCO}_{2}+\mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O}+3.76 * \mathrm{aN}_{2}$
estimate " $\mathrm{n}_{\text {carbono }}$ " by using,
$\left[\mathrm{CO}_{2}\right]=\mathrm{n}_{\text {carbono }} / \mathrm{n}_{\text {total }}$
$\mathrm{n}_{\text {total }}=\mathrm{pV} / R T$
V ~ Vinit-Vwater
$\mathrm{n}_{\text {carbono }}=\left[\mathrm{CO}_{2}\right]^{*} \mathrm{n}_{\text {total }}$
$\mathrm{n}_{\text {fuel }} * \mathrm{X}=\mathrm{n}_{\text {carbono }}$
estimate " $\mathrm{n}_{\text {hidrogénio" }}$ by using,
$\mathrm{pH} 2 \mathrm{O} /$ pTotal $=\mathrm{nH}_{2} \mathrm{O} /$ nTotal
$\mathrm{pH}_{2} \mathrm{O}=\mathrm{nH}_{2} \mathrm{O}^{*} \mathrm{p}_{\text {total }} / \mathrm{n}_{\text {total }}=\phi^{*} \mathrm{p}_{\text {sat }}=\mathrm{nH}_{2} \mathrm{O} * \mathrm{RT} / \mathrm{V}$
$\mathrm{mH}_{2} \mathrm{O} / \mathrm{V}=\phi^{*} \mathrm{p}_{\text {sat }} * \mathrm{M}_{\mathrm{H} 2 \mathrm{O}} /(\mathrm{RT})$
$\mathrm{n}_{\mathrm{H} 2 \mathrm{O}} / 2=\mathrm{nH}_{2} \mathrm{O}=\mathrm{mH}_{2} \mathrm{O} / \mathrm{M}_{\mathrm{H} 2 \mathrm{O}}$
$\mathrm{n}_{\text {fuel }} * \mathrm{y}=\mathrm{n}_{\text {hidrogénio }}$
vi) Stoichiometric complete combustion without dissociation: Estimate the stoichiometric (A/F)s and compare with the value calculated in iv. Comment.
vii) Convert ambient dome [CO]_initial into \%vol/vol and humidity into \%vol/vol and comment on the approximation of air in ii).
viii) The energy from the flame is from the candle wax burning. Energy is released as the bonds in the candle wax molecules and air molecules break. Some of the energy remains in the chemical bonds of the products, carbon dioxide and water. The rest of the energy is released as heat and light.

Assume the chemical formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{1.9 n} \mathrm{O}_{0.14 \mathrm{n}}$ and $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ and stoichiometry mass balance calculations. Estimate the energy release in the combustion reaction in $\mathrm{MJ} / \mathrm{kg}$ (LHV) and comment on what candle would have higher Tad. Additionally, which candle do you think will form more NOx pollutant.?Justify.

Tip: for hydrocarbon enthalpy of formation, combustion is the break of chemical bonds of an hydrocarbon and the formation of other chemical bonds e.g. determine the enthalpy of formation of $\mathrm{CH}_{4}, \mathrm{C}+2 \mathrm{H}_{2}->\mathrm{CH}_{4}$, https://www.youtube.com/watch? v=BgaiOf0-2xo

Or, alternatively, use the Dulong's correlation (S. Hosokai, K. Matsuoka, K. Kuramoto, and Y. Suzuki, "Modification of Dulong's formula to estimate heating value of gas, liquid and solid fuels," Fuel Process. Technol., vol. 152, pp. 399-405, Nov. 2016):
$\mathrm{LHV}[\mathrm{kJ} / \mathrm{g}]=38.2 \mathrm{mC}+84.9(\mathrm{mH}-\mathrm{mO} / 8)-\Delta \mathrm{HI}$, where $\Delta \mathrm{HI}$ described latent heat. When the equation applied to gas, liquid and solid fuels, $\Delta \mathrm{HI}$ should be $0,0.5$ and $0.62 \mathrm{~kJ} / \mathrm{g}$, respectively.

## APPENDIX

The table shows the "absolute humidity" in $\mathrm{g} / \mathrm{m}^{3}$ (upper line) and the "dew point temperature" of the air in ${ }^{\circ} \mathrm{C}$ (lower line) for certain air temperatures as a function of relative humidity.

Example: At an air temperature of $50^{\circ} \mathrm{C}$ and a relative humidity of $70 \%$, the absolute humidity is $58.1 \mathrm{~g} / \mathrm{m}^{3}$ and the dew point temperature is $43^{\circ} \mathrm{C}$.

| Relative humidity | 10\% | 20\% | 30\% | 40\% | 50\% | 60\% | 70\% | 80\% | 90\% | 100\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Air temperature [ ${ }^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |  |  |  |
| +50 | 8.3 | 16.6 | 24.9 | 33.2 | 41.5 | 49.8 | 58.1 | 66.4 | 74.7 | 83.0 |
|  | +8 | +19 | +26 | +32 | +36 | +40 | +43 | +45 | +48 | +50 |
| +45 | 6.5 | 13.1 | 19.6 | 26.2 | 32.7 | 39.3 | 45.8 | 52.4 | 58.9 | 65.4 |
|  | +4 | +15 | +22 | +27 | +32 | +36 | +38 | +41 | +43 | +45 |
| +40 | 5.1 | 10.2 | 15.3 | 20.5 | 25.6 | 30.7 | 35.8 | 40.9 | 46.0 | 51.1 |
|  | +1 | +11 | +18 | +23 | +27 | +30 | +33 | +36 | +38 | +40 |
| +35 | 4.0 | 7.9 | 11.9 | 15.8 | 19.8 | 23.8 | 27.7 | 31.7 | 35.6 | 39.6 |
|  | -2 | +8 | +14 | +18 | +21 | +25 | +28 | +31 | +33 | +35 |
| +30 | 3.0 | 6.1 | 9.1 | 12.1 | 15.2 | 18.2 | 21.3 | 24.3 | 27.3 | 30.4 |
|  | -6 | +3 | +10 | +14 | +18 | +21 | +24 | +26 | +28 | +30 |
| +25 | 2.3 | 4.6 | 6.9 | 9.2 | 11.5 | 13.8 | 16.1 | 18.4 | 20.7 | 23.0 |
|  | -8 | 0 | +5 | +10 | +13 | +16 | +19 | +21 | +23 | +25 |
| +20 | 1.7 | 3.5 | 5.2 | 6.9 | 8.7 | 10.4 | 12.1 | 13.8 | 15.6 | 17.3 |
|  | -12 | -4 | +1 | +5 | +9 | +12 | +14 | +16 | +18 | +20 |
| +15 | 1.3 | 2.6 | 3.9 | 5.1 | 6.4 | 7.7 | 9.0 | 10.3 | 11.5 | 12.8 |
|  | -16 | -7 | -3 | +1 | +4 | +7 | +9 | +11 | +13 | +15 |
| +10 | 0.9 | 1.9 | 2.8 | 3.8 | 4.7 | 5.6 | 6.6 | 7.5 | 8.5 | 9.4 |
|  | -19 | -11 | -7 | -3 | 0 | +1 | +4 | +6 | +8 | +10 |
| +5 | 0.7 | 1.4 | 2.0 | 2.7 | 3.4 | 4.1 | 4.8 | 5.4 | 6.1 | 6.8 |
|  | -23 | -15 | -11 | -7 | -5 | -2 | 0 | +2 | +3 | +5 |
| 0 | 0.5 | 1.0 | 1.5 | 1.9 | 2.4 | 2.9 | 3.4 | 3.9 | 4.4 | 4.8 |
|  | -26 | -19 | -14 | -11 | -8 | -6 | -4 | -3 | -2 | 0 |
| -5 | 0.3 | 0.7 | 1.0 | 1.4 | 1.7 | 2.1 | 2.4 | 2.7 | 3.1 | 3.4 |
|  | -29 | -22 | -18 | -15 | -13 | -11 | -8 | -7 | -6 | -5 |
| -10 | 0.2 | 0.5 | 0.7 | 0.9 | 1.2 | 1.4 | 1.6 | 1.9 | 2.1 | 2.3 |
|  | -34 | -26 | -22 | -19 | -17 | -15 | -13 | -11 | -11 | -10 |


| Temp. ${ }^{\circ} \mathrm{C}$ $T$ | Sat. press. kPa $P_{\text {sat }}$ | Specific volume $\mathbf{m}^{3} / \mathbf{k g}$ |  | Internal energy kJ/kg |  |  | Enthalpy $\mathbf{k J} / \mathbf{k g}$ |  |  | Entropy kJ/(kg $\cdot \mathbf{K}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. <br> liquid <br> $v_{f}$ | Sat. vapor $\qquad$ | Sat. <br> liquid <br> $u_{f}$ | Evap. <br> $u_{f g}$ | Sat. vapor $\qquad$ | Sat. <br> liquid <br> $h_{f}$ | Evap. $h_{f g}$ | Sat. vapor $\qquad$ | Sat. liquid $\qquad$ | Evap. $s_{f g}$ | Sat. vapor $s_{g}$ |
| 0.01 | 0.6113 | 0.001000 | 206.14 | 0.0 | 2375.3 | 2375.3 | 0.01 | 2501.3 | 2501.4 | 0.000 | 9.1562 | 9.1562 |
| 5 | 0.8721 | 0.001000 | 147.12 | 20.97 | 2361.3 | 2382.3 | 20.98 | 2489.6 | 2510.6 | 0.0761 | 8.9496 | 9.0257 |
| 10 | 1.2276 | 0.001000 | 106.38 | 42.00 | 2347.2 | 2389.2 | 42.01 | 2477.7 | 2519.8 | 0.1510 | 8.7498 | 8.9008 |
| 15 | 1.7051 | 0.001001 | 77.93 | 62.99 | 2333.1 | 2396.1 | 62.99 | 2465.9 | 2528.9 | 0.2245 | 8.5569 | 8.7814 |
| 20 | 2.339 | 0.001002 | 57.79 | 83.95 | 2319.0 | 2402.9 | 83.96 | 2454.1 | 2538.1 | 0.2966 | 8.3706 | 8.6672 |
| 25 | 3.169 | 0.001003 | 43.36 | 104.88 | 2304.9 | 2409.8 | 104.89 | 2442.3 | 2547.2 | 0.3674 | 8.1905 | 8.5580 |
| 30 | 4.246 | 0.001004 | 32.89 | 125.78 | 2290.8 | 2416.6 | 125.79 | 2430.5 | 2556.3 | 0.4369 | 8.0164 | 8.4533 |
| 35 | 5.628 | 0.001006 | 25.22 | 146.67 | 2276.7 | 2423.4 | 146.68 | 2418.6 | 2565.3 | 0.5053 | 7.8478 | 8.3531 |
| 40 | 7.384 | 0.001008 | 19.52 | 167.56 | 2262.6 | 2430.1 | 167.57 | 2406.7 | 2574.3 | 0.5725 | 7.6845 | 8.2570 |
| 45 | 9.593 | 0.001010 | 15.26 | 188.44 | 2248.4 | 2436.8 | 188.45 | 2394.8 | 2583.2 | 0.6387 | 7.5261 | 8.1648 |
| 50 | 12.349 | 0.001012 | 12.03 | 209.32 | 2234.2 | 2443.5 | 209.33 | 2382.7 | 2592.1 | 0.7038 | 7.3725 | 8.0763 |
| 55 | 15.758 | 0.001015 | 9.568 | 230.21 | 2219.9 | 2450.1 | 230.23 | 2370.7 | 2600.9 | 0.7679 | 7.2234 | 7.9913 |
| 60 | . 19.940 | 0.001017 | 7.671 | 251.11 | 2205.5 | 2456.6 | 251.13 | 2358.5 | 2609.6 | 0.8312 | 7.0784 | 7.9096 |
| 65 | 25.03 | 0.001020 | 6.197 | 272.02 | 2191.1 | 2463.1 | 272.06 | 2346.2 | 2618.3 | 0.8935 | 6.9375 | 7.8310 |
| 70 | 31.19 | 0.001023 | 5.042 | 292.95 | 2176.6 | 2469.6 | 292.98 | 2333.8 | 2626.8 | 0.9549 | 6.8004 | 7.7553 |
| 75 | 38.58 | 0.001026 | 4.131 | 313.90 | 2162.0 | 2475.9 | 313.93 | 2321.4 | 2635.3 | 1.0155 | 6.6669 | 7.6824 |
| 80 | 47.39 | 0.001029 | 3.407 | 334.86 | 2147.4 | 2482.2 | 334.91 | 2308.8 | 2643.7 | 1.0753 | 6.5369 | 7.6122 |
| 85 | 57.83 | 0.001033 | 2.828 | 355.84 | 2132.6 | 2488.4 | 355.90 | 2296.0 | 2651.9 | 1.1343 | 6.4102 | 7.5445 |
| 90 | 70.14 | 0.001036 | 2.361 | 376.85 | 2117.7 | 2494.5 | 376.92 | 2283.2 | 2660.1 | 1.1925 | 6.2866 | 7.4791 |
| 95 | 84.55 | 0.001040 | 1.982 | 397.88 | 2102.7 | 2500.6 | 397.96 | 2270.2 | 2668.1 | 1.2500 | 6.1659 | 7.4159 |
| 100 | 0.10135 | 0.001044 | 1.6729 | 418.94 | 2087.6 | 2506.5 | 419.04 | 2257.0 | 2676.1 | 1.3069 | 6.0480 | 7.3549 |
| 105 | 0.12082 | 0.001048 | 1.4194 | 440.02 | 2072.3 | 2512.4 | 440.15 | 2243.7 | 2683.8 | 1.3630 | 5.9328 | 7.2958 |
| 110 | 0.14327 | 0.001052 | 1.2102 | 461.14 | 2057.0 | 2518.1 | 461.30 | 2230.2 | 2691.5 | 1.4185 | 5.8202 | 7.2387 |
| 115 | 0.16906 | 0.001056 | 1.0366 | 482.30 | 2041.4 | 2523.7 | 482.48 | 2216.5 | 2699.0 | 1.4734 | 5.7100 | 7.1833 |
| 120 | 0.19853 | 0.001060 | 0.8919 | 503.50 | 2025.8 | 2529.3 | 503.71 | 2202.6 | 2706.3 | 1.5276 | 5.6020 | 7.1296 |
| 125 | 0.2321 | 0.001065 | 0.7706 | 524.74 | 2009.9 | 2534.6 | 524.99 | 2188.5 | 2713.5 | 1.5813 | 5.4962 | 7.0775 |
| 130 | 0.2701 | 0.001070 | 0.6685 | 546.02 | 1993.9 | 2539.9 | 546.31 | 2174.2 | 2720.5 | 1.6344 | 5.3925 | 7.0269 |
| 135 | 0.3130 | 0.001075 | 0.5822 | 567.35 | 1977.7 | 2545.0 | 567.69 | 2159.6 | 2727.3 | 1.6870 | 5.2907 | 6.9777 |
| 140 | 0.3613 | 0.001080 | 0.5089 | 588.74 | 1961.3 | 2550.0 | 589.13 | 2144.7 | 2733.9 | 1.7391 | 5.1908 | 6.9299 |
| 145 | 0.4154 | 0.001085 | 0.4463 | 610.18 | 1944.7 | 2554.9 | 610.63 | 2129.6 | 2740.3 | 1.7907 | 5.0926 | 6.8833 |
| 150 | 0.4758 | 0.001091 | 0.3928 | 631.68 | 1927.9 | 2559.5 | 632.20 | 2114.3 | 2746.5 | 1.8418 | 4.9960 | 6.8379 |
| 155 | 0.5431 | 0.001096 | 0.3468 | 653.24 | 1910.8 | 2564.1 | 653.84 | 2098.6 | 2752.4 | 1.8925 | 4.9010 | 6.7935 |
| 160 | 0.6178 | 0.001102 | 0.3071 | 674.87 | 1893.5 | 2568.4 | 675.55 | 2082.6 | 2758.1 | 1.9427 | 4.8075 | 6.7502 |
| 165 | 0.7005 | 0.001108 | 0.2727 | 696.56 | 1876.0 | 2572.5 | 697.34 | 2066.2 | 2763.5 | 1.9925 | 4.7153 | 6.7078 |
| 170 | 0.7917 | 0.001114 | 0.2428 | 718.33 | 1858.1 | 2576.5 | 719.21 | 2049.5 | 2768.7 | 2.0419 | 4.6244 | 6.6663 |
| 175 | 0.8920 | 0.001121 | 0.2168 | 740.17 | 1840.0 | 2580.2 | 741.17 | 2032.4 | 2773.6 | 2.0909 | 4.5347 | 6.6256 |
| 180 | 1.0021 | 0.001127 | 0.19405 | 762.09 | 1821.6 | 2583.7 | 763.22 | 2015.0 | 2778.2 | 2.1396 | 4.4461 | 6.5857 |
| 185 | 1.1227 | 0.001134 | 0.17409 | 784.10 | 1802.9 | 2587.0 | 785.37 | 1997.1 | 2782.4 | 2.1879 | 4.3586 | 6.5465 |
| 190 | 1.2544 | 0.001141 | 0.15654 | 806.19 | 1783.8 | 2590.0 | 807.62 | 1978.8 | 2786.4 | 2.2359 | 4.2720 | 6.5079 |
| 195 | 1.3978 | 0.001149 | 0.14105 | 828.37 | 1764.4 | 2592.8 | 829.98 | 1960.0 | 2790.0 | 2.2835 | 4.1863 | 6.4698 |


| 200 | 1.5538 | 0.001157 | 0.12736 | 850.65 | 1744.7 | 2595.3 | 852.45 | 1940.7 | 2793.2 | 2.3309 | 4.1014 | 6.4323 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 205 | 1.7230 | 0.001164 | 0.11521 | 873.04 | 1724.5 | 2597.5 | 875.04 | 1921.0 | 2796.0 | 2.3780 | 4.0172 | 6.3952 |
| 210 | 1.9062 | 0.001173 | 0.10441 | 895.53 | 1703.9 | 2599.5 | 897.76 | 1900.7 | 2798.5 | 2.4248 | 3.9337 | 6.3585 |
| 215 | 2.104 | 0.001181 | 0.09479 | 918.14 | 1682.9 | 2601.1 | 920.62 | 1879.9 | 2800.5 | 2.4714 | 3.8507 | 6.3221 |
| 220 | 2.318 | 0.001190 | 0.08619 | 940.87 | 1661.5 | 2602.4 | 943.62 | 1858.5 | 2802.1 | 2.5178 | 3.7683 | 6.2861 |
| 225 | 2.548 | 0.001199 | 0.07849 | 963.73 | 1639.6 | 2603.3 | 966.78 | 1836.5 | 2803.3 | 2.5639 | 3.6863 | 6.2503 |
| 230 | 2.795 | 0.001209 | 0.07158 | 986.74 | 1617.2 | 2603.9 | 990.12 | 1813.8 | 2804.0 | 2.6099 | 3.6047 | 6.2146 |
| 235 | 3.060 | 0.001219 | 0.06537 | 1009.89 | 1594.2 | 2604.1 | 1013.62 | 1790.5 | 2804.2 | 2.6558 | 3.5233 | 6.1791 |
| 240 | 3.344 | 0.001229 | 0.05976 | 1033.21 | 1570.8 | 2604.0 | 1037.32 | 1766.5 | 2803.8 | 2.7015 | 3.4422 | 6.1437 |
| 245 | 3.648 | 0.001240 | 0.05471 | 1056.71 | 1546.7 | 2603.4 | 1061.23 | 1741.7 | 2803.0 | 2.7472 | 3.3612 | 6.1083 |
| 250 | 3.973 | 0.001251 | 0.05013 | 1080.39 | 1522.0 | 2602.4 | 1085.36 | 1716.2 | 2801.5 | 2.7927 | 3.2802 | 6.0730 |
| 255 | 4.319 | 0.001263 | 0.04598 | 1104.28 | 1596.7 | 2600.9 | 1109.73 | 1689.8 | 2799.5 | 2.8383 | 3.1992 | 6.0375 |
| 260 | 4.688 | 0.001276 | 0.04221 | 1128.39 | 1470.6 | 2599.0 | 1134.37 | 1662.5 | 2796.9 | 2.8838 | 3.1181 | 6.0019 |
| 265 | 5.081 | 0.001289 | 0.03877 | 1152.74 | 1443.9 | 2596.6 | 1159.28 | 1634.4 | 2793.6 | 2.9294 | 3.0368 | 5.9662 |
| 270 | 5.499 | 0.001302 | 0.03564 | 1177.36 | 1416.3 | 2593.7 | 1884.51 | 1605.2 | 2789.7 | 2.9751 | 2.9551 | 5.9301 |
| 275 | 5.942 | 0.001317 | 0.03279 | 1202.25 | 1387.9 | 2590.2 | 1210.07 | 1574.9 | 2785.0 | 3.0208 | 2.8730 | 5.8938 |
| 280 | 6.412 | 0.001332 | 0.03017 | 1227.46 | 1358.7 | 2586.1 | 1235.99 | 1543.6 | 2779.6 | 3.0668 | 2.7903 | 5.8571 |
| 285 | 6.909 | 0.001348 | 0.02777 | 1253.00 | 1328.4 | 2581.4 | 1262.31 | 1511.0 | 2773.3 | 3.1130 | 2.7070 | 5.8199 |
| 290 | 7.436 | 0.001366 | 0.02557 | 1278.92 | 1297.1 | 2576.0 | 1289.07 | 1477.1 | 2766.2 | 3.1594 | 2.6227 | 5.7821 |
| 295 | 7.993 | 0.001384 | 0.02354 | 1305.2 | 1264.7 | 2569.9 | 1316.3 | 1441.8 | 2758.1 | 3.2062 | 2.5375 | 5.7437 |
| 300 | 8.581 | 0.001404 | 0.02167 | 1332.0 | 1231.0 | 2563.0 | 1344.0 | 1404.9 | 2749.0 | 3.2534 | 2.4511 | 5.7045 |
| 305 | 9.202 | 0.001425 | 0.019948 | 1359.3 | 1195.9 | 2555.2 | 1372.4 | 1366.4 | 2738.7 | 3.3010 | 2.3633 | 5.6643 |
| 310 | 9.856 | 0.001447 | 0.018350 | 1387.1 | 1159.4 | 2546.4 | 1401.3 | 1326.0 | 2727.3 | 3.3493 | 2.2737 | 5.6230 |
| 315 | 10.547 | 0.001472 | 0.016867 | 1415.5 | 1121.1 | 2536.6 | 1431.0 | 1283.5 | 2714.5 | 3.3982 | 2.1821 | 5.5804 |
| 320 | 11.274 | 0.001499 | 0.015488 | 1444.6 | 1080.9 | 2525.5 | 1461.5 | 1238.6 | 2700.1 | 3.4480 | 2.0882 | 5.5362 |
| 330 | 12.845 | 0.001561 | 0.012996 | 1505.3 | 993.7 | 2498.9 | 1525.3 | 1140.6 | 2665.9 | 3.5507 | 1.8909 | 5.4417 |
| 340 | 14.586 | 0.001638 | 0.010797 | 1570.3 | 894.3 | 2464.6 | 1594.2 | 1027.9 | 2622.0 | 3.6594 | 1.6763 | 5.3357 |
| 350 | 16.513 | 0.001740 | 0.008813 | 1641.9 | 776.6 | 2418.4 | 1670.6 | 893.4 | 2563.9 | 3.7777 | 1.4335 | 5.2112 |
| 360 | 18.651 | 0.001893 | 0.006945 | 1725.2 | 626.3 | 2351.5 | 1760.5 | 720.3 | 2481.0 | 3.9147 | 1.1379 | 5.0526 |
| 370 | 21.03 | 0.002213 | 0.004925 | 1844.0 | 384.5 | 2228.5 | 1890.5 | 441.6 | 2332.1 | 4.1106 | 0.6865 | 4.7971 |
| 374.14 | 22.09 | 0.003155 | 0.003155 | 2029.6 | 0 | 2029.6 | 2099.3 | 0 | 2099.3 | 4.4298 | 0 | 4.4298 |

Tabela A-6 - Propriedades do vapor sobreaquecido

| $\begin{gathered} T \\ { }^{\circ} \mathbf{C} \\ \hline \end{gathered}$ | $\mathrm{m}^{3} / \mathrm{kg}$ | $\begin{aligned} & u \\ & \mathbf{k} / \mathbf{k g} \end{aligned}$ | $h$ kJ/kg | $\stackrel{s}{\mathbf{k} J /(\mathbf{k g} \cdot \mathbf{K})}$ | $\begin{aligned} & v \\ & \mathrm{~m}^{3} / \mathrm{kg} \\ & \hline \end{aligned}$ | $\begin{aligned} & u \\ & \mathbf{k} \mathbf{J} / \mathbf{k g} \\ & \hline \end{aligned}$ | $h$ kJ/kg | ${ }_{\mathbf{k} \cdot \mathbf{J} /(\mathbf{k g} \cdot \mathbf{K})}$ | $\mathrm{m}^{v} / \mathrm{kg}$ | ${ }_{\mathbf{k}}^{\mathbf{k}} \mathrm{J} / \mathbf{k g}$ | $h$ kJ/kg | $\stackrel{s}{\mathbf{k} \mathbf{J} /(\mathbf{k g} \cdot \mathbf{K})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P=0.01 \mathrm{MPa}\left(45.81{ }^{\circ} \mathrm{C}\right)^{*}$ |  |  |  | $P=0.05 \mathrm{MPa}\left(\mathbf{8 1 . 3 3}{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\left.P=\mathbf{0 . 1 0 ~ M P a ~ ( 9 9 . 6 3}{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. ${ }^{\text { }}$ | 14.674 | 2437.9 | 2584.7 | 8.1502 | 3.240 | 2483.9 | 2645.9 | 7.5939 | 1.6940 | 2506.1 | 2675.5 | 7.3594 |
| 50 | 14.869 | 2443.9 | 2592.6 | 8.1749 |  |  |  |  |  |  |  |  |
| 100 | 17.196 | 2515.5 | 2687.5 | 8.4479 | 3.418 | 2511.6 | 2682.5 | 7.6947 | 1.6958 | 2506.7 | 2676.2 | 7.3614 |
| 150 | 19.512 | 2587.9 | 2783.0 | 8.6882 | 3.889 | 2585.6 | 2780.1 | 7.9401 | 1.9364 | 2582.8 | 2776.4 | 7.6134 |
| 200 | 21.825 | 2661.3 | 2879.5 | 8.9038 | 4.356 | 2659.9 | 2877.7 | 8.1580 | 2.172 | 2658.1 | 2875.3 | 7.8343 |
| 250 | 24.136 | 2736.0 | 2977.3 | 9.1002 | 4.820 | 2735.0 | 2976.0 | 8.3556 | 2.406 | 2733.7 | 2974.3 | 8.0333 |
| 300 | 26.445 | 2812.1 | 3076.5 | 9.2813 | 5.284 | 2811.3 | 3075.5 | 8.5373 | 2.639 | 2810.4 | 3074.3 | 8.2158 |
| 400 | 31.063 | 2968.9 | 3279.6 | 9.6077 | 6:209 | 2968.5 | 3278.9 | 8.8642 | 3.103 | 2967.9 | 3278.2 | 8.5435 |
| 500 | 35.679 | 3132.3 | 3489.1 | 9.8978 | 7.134 | 3132.0 | 3488.7 | 9.1546 | 3.565 | 3131.6 | 3488.1 | 8.8342 |
| 600 | 40.295 | 3302.5 | 3705.4 | 10.1608 | 8.057 | 3302.2 | 3705.1 | 9.4178 | 4.028 | 3301.9 | 3704.4 | 9.0976 |
| 700 | 44.911 | 3479.6 | 3928.7 | 10.4028 | 8.981 | 3479.4 | 3928.5 | 9.6599 | 4.490 | 3479.2 | 3928.2 | 9.3398 |
| 800 | 49.526 | 3663.8 | 4159.0 | 10.6281 | 9.904 | 3663.6 | 4158.9 | 9.8852 | 4.952 | 3663.5 | 4158.6 | 9.5652 |
| 900 | 54.141 | 3855.0 | 4396.4 | 10.8396 | 10.828 | 3854.9 | 4396.3 | 10.0967 | 5.414 | 3854.8 | 4396.1 | 9.7767 |
| 1000 | 58.757 | 4053.0 | 4640.6 | 11.0393 | 11.751 | 4052.9 | 4640.5 | 10.2964 | 5.875 | 4052.8 | 4640.3 | 9.9764 |
| 1100 | 63.372 | 4257.5 | 4891.2 | 11.2287 | 12.674 | 4257.4 | 4891.1 | . 10.4859 | 6.337 | 4257.3 | 4891.0 | 10.1659 |
| 1200 | 67.987 | 4467.9 | 5147.8 | 11.4091 | 13.597 | 4467.8 | 5147.7 | 10.6662 | 6.799 | 4467.7 | 5147.6 | 10.3463 |
| 1300 | 72.602 | 4683.7 | 5409.7 | 11.5811 | 14.521 | 4683.6 | 5409.6 | 10.8382 | 7.260 | 4683.5 | 5409.5 | 10.5183 |
|  | $P=\mathbf{0 . 2 0 ~ M P a ~ ( 1 2 0 . 2 3 ~}{ }^{\circ} \mathrm{C}$ ) |  |  |  | $P=0.30 \mathrm{MPa}\left(133.55^{\circ} \mathrm{C}\right)$ |  |  |  | $P=0.40 \mathrm{MPa}\left(143.63{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. 150 | 0.8857 | 2529.5 | 2706.7 | 7.1272 | 0.6058 | 2543.6 | 2725.3 | 6.9919 | 0.4625 | 2553.6 | 2738.6 | 6.8959 |
|  | 0.9596 | 2576.9 | 2768.8 | 7.2795 | 0.6339 | 2570.8 | 2761.0 | 7.0778 | 0.4708 | 2564.5 | 2752.8 | 6.9299 |
| 200 | 1.0803 | 2654.4 | 2870.5 | 7.5066 | 0.7163 | 2650.7 | 2865.6 | 7.3115 | 0.5342 | 2646.8 | 2860.5 | 7.1706 |
| 250 | 1.1988 | 2731.2 | 2971.0 | 7.7086 | 0.7964 | 2728.7 | 2967.6 | 7.5166 | 0.5951 | 2726.1 | 2964.2 | 7.3789 |
| 300 | 1.3162 | 2808.6 | 3071.8 | 7.8926 | 0.8753 | 2806.7 | 3069.3 | 7.7022 | 0.6548 | 2804.8 | 3066.8 | 7.5662 |
| 400 | 1.5493 | 2966.7 | 3276.6 | 8.2218 | 1.0315 | 2965.6 | 3275.0 | 8.0330 | 0.7726 | 2964.4 | 3273.4 | 7.8985 |
| 500 | 1.7814 | 3130.8 | 3487.1 | 8.5133 | 1.1867 | 3130.0 | 3486.0 | 8.3251 | 0.8893 | 3129.2 | 3484.9 | 8.1913 |
| 600 | 2.013 | 3301.4 | 3704.0 | 8.7770 | 1.3414 | 3300.8 | 3703.2 | 8.5892 | 1.0055 | 3300.2 | 3702.4 | 8.4558 |
| 700 | 2.244 | 3478.8 | 3927.6 | 9.0194 | 1.4957 | 3478.4 | 3927.1 | 8.8319 | 1.1215 | 3477.9 | 3926.5 | 8.6987 |
| 800 | 2.475 | 3663.1 | 4158.2 | 9.2449 | 1.6499 | 3662.9 | 4157.8 | 9.0576 | 1.2372 | 3662.4 | 4157.3 | 8.9244 |
| 900 | 2.705 | 3854.5 | 4395.8 | 9.4566 | 1.8041 | 3854.2 | 4395.4 | 9.2692 | 1.3529 | 3853.9 | 4395.1 | 9.1362 |
| 1000 | 2.937 | 4052.5 | 4640.0 | 9.6563 | 1.9581 | 4052.3 | 4639.7 | 9.4690 | 1.4685 | 4052.0 | 4639.4 | 9.3360 |
| 1100 | 3.168 | 4257.0 | 4890.7 | 9.8458 | 2.1121 | 4256.8 | 4890.4 | 9.6585 | 1.5840 | 4256.5 | 4890.2 | 9.5256 |
| 1200 | 3.399 | 4467.5 | 5147.5 | 10.0262 | 2.2661 | 4467.2 | 5147.1 | 9.8389 | 1,6996 | 4467.0 | 5146.8 | 9.7060 |
| 1300 | 3.630 | 4683.2 | 5409.3 | 10.1982 | 2.4201 | 4683.0 | 5409.0 | 10.0110 | 1.8151 | 4682.8 | 5408.8 | 9.8780 |
|  | $\boldsymbol{P}=\mathbf{0 . 5 0 ~ M P a ~ ( 1 5 1 . 8 6 0}$ ) |  |  |  | $\boldsymbol{P}=\mathbf{0 . 6 0 ~ M P a ~ ( 1 5 8 . 8 5 ~}{ }^{\circ} \mathrm{C}$ ) |  |  |  | $P=0.80 \mathrm{MPa}\left(170.43{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.3749 | 2561.2 | 2748.7 | 6.8213 | 0.3157 | 2567.4 | 2756.8 | 6.7600 | 0.2404 | 2576.8 | 2769.1 | 6.6628 |
| 200 | 0.4249 | 2642.9 | 2855.4 | 7.0592 | 0.3520 | 2638.9 | 2850.1 | 6.9665 | 0.2608 | 2630.6 | 2839.3 | 6.8158 |
| 250 | 0.4744 | 2723.5 | 2960.7 | 7.2709 | 0.3938 | 2720.9 | 2957.2 | 7.1816 | 0.2931 | 2715.5 | 2950.0 | 7.0384 |
| 300 | 0.5226 | 2802.9 | 3064.2 | 7.4599 | 0.4344 | 2801.0 | 3061.6 | 7.3724 | 0.3241 | 2797.2 | 3056.5 | 7.2328 |
| 350 | 0.5701 | 2882.6 | 3167.7 | 7.6329 | 0.4742 | 2881.2 | 3165.7 | 7.5464 | 0.3544 | 2878.2 | 3161.7 | 7.4089 |
| 400 | 0.6173 | 2963.2 | 3271.9 | 7.7938 | 0.5137 | 2962.1 | 3270.3 | 7.7079 | 0.3843 | 2959.7 | 3267.1 | 7.5716 |
| 500 | 0.7109 | 3128.4 | 3483.9 | 8.0873 | 0.5920 | 3127.6 | 3482.8 | 8.0021 | 0.4433 | 3126.0 | 3480.6 | 7.8673 |
| 600 | 0.8041 | 3299.6 | 3701.7 | 7.3522 | 0.6697 | 3299.1 | 3700.9 | 8.2674 | 0.5018 | 3297.9 | 3699.4 | 8.1333 |
| 700 | 0.8969 | 3477.5 | 3925.9 | 8.5952 | 0.7472 | 3477.0 | 3925.3 | 8.5107 | 0.5601 | 3476.2 | 3924.2 | 8.3770 |
| 800 | 0.9896 | 3662.1 | 4156.9 | 8.8211 | 0.8245 | 3661.8 | 4156.5 | 8.7367 | 0.6181 | 3661.1 | 4155.6 | 8.6033 |
| 900 | 1.0822 | 3853.6 | 4394.7 | 9.0329 | 0.9017 | 3853.4 | 4394.4 | 8.9486 | 0.6761 | 3852.8 | 4393.7 | 8.8153 |
| 1000 | 1.1747 | 4051.8 | 4639.1 | 9.2328 | 0.9788 | 4051.5 | 4638.8 | 9.1485 | 0.7340 | 4051.0 | 4638.2 | 9.0153 |
| 1100 | 1.2672 | 4256.3 | 4889.9 | 9.4224 | 1.0559 | 4256.1 | 4889.6 | 9.3381 | 0.7919 | 4255.6 | 4889.1 | 9.2050 |
| 1200 | 1.3596 | 4466.8 | 5146.6 | 9.6029 | 1.1330 | 4466.5 | 5146.3 | 9.5185 | 0.8497 | 4466.1 | 5145.9 | 9.3855 |
| 1300 | 1.4521 | 4682.5 | 5408.6 | 9.7749 | 1.2101 | 4682.3 | 5408.3 | 9.6906 | 0.9076 | 4681.8 | 5407.9 | 9.5575 |

* A temperatura em parênteses é a temperatura de saturação à referida pressão.
+ Propriedades do vapor saturado à referida pressão.

Tabela A-6 - Propriedades do vapor sobreaquecido (continuação)

| $\begin{gathered} T \\ { }^{\circ} \mathbf{C} \\ \hline \end{gathered}$ | $\mathbf{m}^{3} / \mathbf{k g}$ | $\begin{aligned} & u \\ & \mathbf{k} / \mathbf{k g} \end{aligned}$ | $\begin{aligned} & h \\ & \mathbf{k} \mathbf{J} / \mathbf{k g} \\ & \hline \end{aligned}$ | $\begin{aligned} & s \\ & \mathbf{k} \mathbf{J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & v \\ & \mathbf{m}^{\mathbf{3}} / \mathbf{k g} \\ & \hline \end{aligned}$ | $\mathbf{k J} / \mathbf{k g}$ | h $\mathbf{k J} / \mathbf{k g}$ | $\begin{aligned} & s \\ & \mathbf{K J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & v \\ & \mathbf{m}^{\mathbf{3}} / \mathbf{k g} \\ & \hline \end{aligned}$ | $\begin{aligned} & u \\ & \mathbf{k} \mathbf{J} / \mathbf{k g} \\ & \hline \end{aligned}$ | $h$ kJ/kg | $\begin{aligned} & s \\ & \mathbf{k J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P=1.00 \mathrm{MPa}\left(179.91^{\circ} \mathrm{C}\right)$ |  |  |  | $P=\mathbf{1 . 2 0 ~ M P a ~ ( 1 8 7 . 9 9}{ }^{\circ} \mathrm{C}$ ) |  |  |  | $P=1.40 \mathrm{MPa}\left(195.07^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.19444 | 2583.6 | 2778.1 | 6.5865 | 0.16333 | 2588.8 | 2784.8 | 6.5233 | 0.14084 | 2592.8 | 2790.0 | 6.4693 |
| 200 | 0.2060 | 2621.9 | 2827.9 | 6.6940 | 0.16930 | 2612.8 | 2815.9 | 6.5898 | 0.14302 | 2603.1 | 2803.3 | 6.4975 |
| 250 | 0.2327 | 2709.9 | 2942.6 | 6.9247 | 0.19234 | 2704.2 | 2935.0 | 6.8294 | 0.16350 | 2698.3 | 2927.2 | 6.7467 |
| 300 | 0.2579 | 2793.2 | 3051.2 | 7.1229 | 0.2138 | 2789.2 | 3045.8 | 7.0317 | 0.18228 | 2785.2 | 3040.4 | 6.9534 |
| 350 | 0.2825 | 2875.2 | 3157.7 | 7.3011 | 0.2345 | 2872.2 | 3153.6 | 7.2121 | 0.2003 | 2869.2 | 3149.5 | 7.1360 |
| 400 | 0.3066 | 2957.3 | 3263.9 | 7.4651 | 0.2548 | 2954.9 | 3260.7 | 7.3774 | 0.2178 | 2952.5 | 3257.5 | 7.3026 |
| 500 | 0.3541 | 3124.4 | 3478.5 | 7.7622 | 0.2946 | 3122.8 | 3476.3 | 7.6759 | 0.2521 | 3121.1 | 3474.1 | 7.6027 |
| 600 | 0.4011 | 3296.8 | 3697.9 | 8.0290 | 0.3339 | 3295.6 | 3696.3 | 7.9435 | 0.2860 | 3294.4 | 3694.8 | 7.8710 |
| 700 | 0.4478 | 3475.3 | 3923.1 | 8.2731 | 0.3729 | 3474.4 | 3922.0 | 8.1881 | 0.3195 | 3473.6 | 3920.8 | 8.1160 |
| 800 | 0.4943 | 3660.4 | 4154.7 | 8.4996 | 0.4118 | 3659.7 | 4153.8 | 8.4148 | 0.3528 | 3659.0 | 4153.0 | 8.3431 |
| 900 | 0.5407 | 3852.2 | 4392.9 | 8.7118 | 0.4505 | 3851.6 | 4392.2 | 8.6272 | 0.3861 | 3851.1 | 4391.5 | 8.5556 |
| 1000 | 0.5871 | 4050.5 | 4637.6 | 8.9119 | 0.4892 | 4050.0 | 4637.0 | 8.8274 | 0.4192 | 4049.5 | 4636.4 | 8.7559 |
| 1100 | 0.6335 | 4255.1 | 4888.6 | 9.1017 | 0.5278 | 4254.6 | 4888.0 | 9.0172 | 0.4524 | 4254.1 | 4887.5 | 8.9457 |
| 1200 | 0.6798 | 4465.6 | 5145.4 | 9.2822 | 0.5665 | 4465.1 | 5144.9 | 9.1977 | 0.4855 | 4464.7 | 5144.4 | 9.1262 |
| 1300 | 0.7261 | 4681.3 | 5407.4 | 9.4543 | 0.6051 | 4680.9 | 5407.0 | 9.3698 | 0.5186 | 4680.4 | 5406.5 | 9.2984 |
|  | $P=1.60 \mathrm{MPa}\left(201.41^{\circ} \mathrm{C}\right)$ |  |  |  | $P=1.80 \mathrm{MPa}\left(207.15^{\circ} \mathrm{C}\right)$ |  |  |  | $\boldsymbol{P}=\mathbf{2 . 0 0} \mathbf{M P a}\left(\mathbf{2 1 2 . 4 2}{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.12380 | 2596.0 | 2794.0 | 6.4218 | 0.11042 | 2598.4 | 2797.1 | 6.3794 | 0.09963 | 2600.3 | 2799.5 | 6.3409 |
| 225 | 0.13287 | 2644.7 | 2857.3 | 6.5518 | 0.11673 | 2636.6 | 2846.7 | 6.4808 | 0.10377 | 2628.3 | 2835.8 | 6.4147 |
| 250 | 0.14184 | 2692.3 | 2919.2 | 6.6732 | 0.12497 | 2686.0 | 2911.0 | 6.6066 | 0.11144 | 2679.6 | 2902.5 | 6.5453 |
| 300 | 0.15862 | 2781.1 | 3034.8 | 6.8844 | 0.14021 | 2776.9 | 3029.2 | 6.8226 | 0.12547 | 2772.6 | 3023.5 | 6.7664 |
| 350 | 0.17456 | 2866.1 | 3145.4 | 7.0694 | 0.15457 | 2863.0 | 3141.2 | 7.0100 | 0.13857 | 2859.8 | 3137.0 | 6.9563 |
| 400 | 0.19005 | 2950.1 | 3254.2 | 7.2374 | 0.16847 | 2947.7 | 3250.9 | 7.1794 | 0.15120 | 2945.2 | 3247.6 | 7.1271 |
| 500 | 0.2203 | 3119.5 | 3472.0 | 7.5390 | 0.19550 | 3117.9 | 3469.8 | 7.4825 | 0.17568 | 3116.2 | 3467.6 | 7.4317 |
| 600 | 0.2500 | 3293.3 | 3693.2 | 7.8080 | 0.2220 | 3292.1 | 3691.7 | 7.7523 | 0.19960 | 3290.9 | 3690.1 | 7.7024 |
| 700 | 0.2794 | 3472.7 | 3919.7 | 8.0535 | 0.2482 | 3471.8 | 3918.5 | 7.9983 | 0.2232 | 3470.9 | 3917.4 | 7.9487 |
| 800 | 0.3086 | 3658.3 | 4152.1 | 8.2808 | 0.2742 | 3657.6 | 4151.2 | 8.2258 | 0.2467 | 3657.0 | 4150.3 | 8.1765 |
| 900 | 0.3377 | 3850.5 | 4390.8 | 8.4935 | 0.3001 | 3849.9 | 4390.1 | 8.4386 | 0.2700 | 3849.3 | 4389.4 | 8.3895 |
| 1000 | 0.3668 | 4049.0 | 4635.8 | 8.6938 | 0.3260 | 4048.5 | 4635.2 | 8.6391 | 0.2933 | 4048.0 | 4634.6 | 8.5901 |
| 1100 | 0.3958 | 4253.7 | 4887.0 | 8.8837 | 0.3518 | 4253.2 | 4886.4 | 8.8290 | 0.3166 | 4252.7 | 4885.9 | 8.7800 |
| 1200 | 0.4248 | 4464.2 | 5143.9 | 9.0643 | 0.3776 | 4463.7 | 5143.4 | 9.0096 | 0.3398 | 4463.3 | 5142.9 | 8.9607 |
| 1300 | 0.4538 | 4679.9 | 5406.0 | 9.2364 | 0.4034 | 4679.5 | 5405.6 | 9.1818 | 0.3631 | 4679.0 | 5405.1 | 9.1329 |
|  | $\boldsymbol{P}=\mathbf{2 . 5 0} \mathbf{M P a}\left(\mathbf{2 2 3 . 9 9}{ }^{\circ} \mathrm{C}\right.$ ) |  |  |  | $P=\mathbf{3 . 0 0} \mathbf{M P a}\left(\mathbf{2 3 3 . 9 0}{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $P=\mathbf{3 . 5 0} \mathrm{MPa}\left(\mathbf{2 4 2 . 6 0}{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.07998 | 2603.1 | 2803.1 | 6.2575 | 0.06668 | 2604.1 | 2804.2 | 6.1869 | 0.05707 | 2603.7 | 2803.4 | 6.1253 |
| 225 | 0.08027 | 2605.6 | 2806.3 | 6.2639 |  |  |  |  |  |  |  |  |
| 250 | 0.08700 | 2662.6 | 2880.1 | 6.4085 | 0.07058 | 2644.0 | 2855.8 | 6.2872 | 0.05872 | 2623.7 | 2829.2 | 6.1749 |
| 300 | 0.09890 | 2761.6 | 3008.8 | 6.6438 | 0.08114 | 2750.1 | 2993.5 | 6.5390 | 0.06842 | 2738.0 | 2977.5 | 6.4461 |
| 350 | 0.10976 | 2851.9 | 3126.3 | 6.8403 | 0.09053 | 2843.7 | 3115.3 | 6.7428 | 0.07678 | 2835.3 | 3104.0 | 6.6579 |
| 400 | 0.12010 | 2939.1 | 3239.3 | 7.0148 | 0.09936 | 2932.8 | 3230.9 | 6.9212 | 0.08453 | 2926.4 | 3222:3 | 6.8405 |
| 450 | 0.13014 | 3025.5 | 3350.8 | 7.1746 | 0.10787 | 3020.4 | 3344.0 | 7.0834 | 0.09196 | 3015.3 | 3337.2 | 7.0052 |
| 500 | 0.13993 | 3112.1 | 3462.1 | 7.3234 | 0.11619 | 3108.0 | 3456.5 | 7.2338 | 0.09918 | 3103.0 | 3450.9 | 7.1572 |
| 600 | 0.15930 | 3288.0 | 3686.3 | 7.5960 | 0.13243 | 3285.0 | 3682.3 | 7.5085 | 0.11324 | 3282.1 | 3678.4 | 7.4339 |
| 700 | 0.17832 | 3468.7 | 3914.5 | 7.8435 | 0.14838 | 3466.5 | 3911.7 | 7.7571 | 0.12899 | 3464.3 | 3908.8 | 7.6837 |
| 800 | 0.19716 | 3655.3 | 4148.2 | 8.0720 | 0.16414 | 3653.5 | 4145.9 | 7.9862 | 0.14056 | 3651.8 | 4143.7 | 7.9134 |
| 900 | 0.21590 | 3847.9 | 4387.6 | 8.2853 | 0.17980 | 3846.5 | 4385.9 | 8.1999 | 0.15402 | 3845.0 | 4384.1 | 8.1276 |
| 1000 | 0.2346 | 4046.7 | 4633.1 | 8.4861 | 0.19541 | 4045.4 | 4631.6 | 8.4009 | 0.16743 | 4044.1 | 4630.1 | 8.3288 |
| 1100 | 0.2532 | 4251.5 | 4884.6 | 8.6762 | 0.21098 | 4250.3 | 4883.3 | 8.5912 | 0.18080 | 4249.2 | 4881.9 | 8.5192 |
| 1200 | 0.2718 | 4462.1 | 5141.7 | 8.8569 | 0.22652 | 4460.9 | 5140.5 | 8.7720 | 0.19415 | 4459.8 | 5139.3 | 8.7000 |
| 1300 | 0.2905 | 4677.8 | 5404.0 | 9.0291 | 0.24206 | 4676.6 | 5402.8 | 8.9442 | 0.20749 | 4675.5 | 5401.7 | 8.8723 |

Tabela A-6 - Propriedades do vapor sobreaquecido (continuação)

| $\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | $\begin{aligned} & v \\ & \mathbf{m}^{3} / \mathbf{k g} \\ & \hline \end{aligned}$ | $\mathbf{k} \mathbf{J} / \mathbf{k g}$ | $h$ kJ/kg | $\begin{aligned} & s \\ & \mathbf{k J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & v \\ & \mathbf{m}^{3} / \mathbf{k g} \\ & \hline \end{aligned}$ | u kJ/kg | $h$ kJ/kg | $\begin{aligned} & s \\ & \mathbf{k} \mathbf{J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ | $\mathbf{m}^{3} / \mathrm{kg}$ | $\begin{aligned} & u \\ & \mathbf{k} / \mathbf{k g} \\ & \hline \end{aligned}$ | $h$ kJ/kg | $\begin{aligned} & s \\ & \mathbf{k} \mathbf{J} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P=15.0 \mathrm{MPa}\left(342.24^{\circ} \mathrm{C}\right)$ |  |  |  | $P=17.3$ MPa (354.75 ${ }^{\circ} \mathrm{C}$ ) |  |  |  | $P=\mathbf{2 0 . 0} \mathrm{MPa}\left(\mathbf{3 6 5 . 8 1}{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.010337 | 2455.5 | 2610.5 | 5.3098 | 0.007920 | 2390.2 | 2528.8 | 5.1419 | 0.005834 | 2293.0 | 2409.7 | 4.9269 |
| 350 | 0.011470 | 2520.4 | 2692.4 | 5.4421 |  |  |  |  |  |  |  |  |
| 400 | 0.015649 | 2740.7 | 2975.5 | 5.8811 | 0.012447 | 2685.0 | 2902.9 | 5.7213 | 0.009942 | 2619.3 | 2818.1 | 5.5540 |
| 450 | 0.018445 | 2879.5 | 3156.2 | 6.1404 | 0.015174 | 2844.2 | 3109.7 | 6.0184 | 0.012695 | 2806.2 | 3060.1 | 5.9017 |
| 500 | 0.02080 | 2996.6 | 3308.6 | 6.3443 | 0.017358 | 2970.3 | 3274.1 | 6.2383 | 0.014768 | 2942.9 | 3238.2 | 6.1401 |
| 550 | 0.02293 | 3104.7 | 3448.6 | 6.5199 | 0.019288 | 3083.9 | 3421.4 | 6.4230 | 0.016555 | 3062.4 | 3393.5 | 6.3348 |
| 600 | 0.02491 | 3208.6 | 3582.3 | 6.6776 | 0.02106 | 3191.5 | 3560.1 | 6.5866 | 0.018178 | 3174.0 | 3537.6 | 6.5048 |
| 650 | 0.02680 | 3310.3 | 3712.3 | 6.8224 | 0.02274 | 3296.0 | 3693.9 | 6.7357 | 0.019693 | 3281.4 | 3675.3 | 6.6582 |
| 700 | 0.02861 | 3410.9 | 3840.1 | 6.9572 | 0.02434 | 3398.7 | 3824.6 | 6.8736 | 0.02113 | 3386.4 | 3809.0 | 6.7993 |
| 800 | 0.03210 | 3610.9 | 4092.4 | 7.2040 | 0.02738 | 3601.8 | 4081.1 | 7.1244 | 0.02385 | 3592.7 | 4069.7 | 7.0544 |
| 900 | 0.03546 | 3811.9 | 4343.8 | 7.4279 | 0.03031 | 3804.7 | 4335.1 | 7.3507 | 0.02645 | 3797.5 | 4326.4 | 7.2830 |
| 1000 | 0.03875 | 4015.4 | 4596.6 | 7.6348 | 0.03316 | 4009.3 | 4589.5 | 7.5589 | 0.02897 | 4003.1 | 4582.5 | 7.4925 |
| 1100 | 0.04200 | 4222.6 | 4852.6 | 7.8283 | 0.03597 | 4216.9 | 4846.4 | 7.7531 | 0.03145 | 4211.3 | 4840.2 | 7.6874 |
| 1200 | 0.04523 | 4433.8 | 5112.3 | 8.0108 | 0.03876 | 4428.3 | 5106.6 | 7.9360 | 0.03391 | 4422.8 | 5101.0 | 7.8707 |
| 1300 | 0.04845 | 4649.1 | 5376.0 | 8.1840 | 0.04154 | 4643.5 | 5370.5 | 8.1093 | 0.03636 | 4638.0 | 5365.1 | 8.0442 |
|  | $P=25.0 \mathrm{MPa}$ |  |  |  | $P=30.0 \mathrm{mPa}$ |  |  |  | $P=35.0 \mathrm{MPa}$ |  |  |  |
| 375 | 0.0019731 | 1798.7 | 1848.0 | 4.0320 | 0.0017892 | 1737.8 | 1791.5 | S 3.9305 | 0.0017003 | 1702.9 | 1762.4 | 3.8722 |
| 400 | 0.006004 | 2430.1 | 2580.2 | 5.1418 | 0.002790 | 2067.4 | 2151.1 | 4.4728 | 0.002100 | 1914.1 | 1987.6 | 4.2126 |
| 425 | 0.007881 | 2609.2 | 2806.3 | 5.4723 | 0.005303 | 2455.1 | 2614.2 | 5.1504 | 0.003428 | 2253.4 | 2373.4 | 4.7747 |
| 450 | 0.009162 | 2720.7 | 2949.7 | 5.6744 | 0.006735 | 2619.3 | 2821.4 | 5.4424 | 0.004961 | 2498.7 | 2672.4 | 5.1962 |
| 500 | 0.011123 | 2884.3 | 3162.4 | 5.9592 | 0.008678 | 2820.7 | 3081.1 | 5.7905 | 0.006927 | 2751.9 | 2994.4 | 5.6282 |
| 550 | 0.012724 | 3017.5 | 3335.6 | 6.1765 | 0.010168 | 2970.3 | 3275.4 | 6.0342 | 0.008345 | 2921.0 | 3213.0 | 5.9026 |
| 600 | 0.014137 | 3137.9 | 3491.4 | 6.3602 | 0.011446 | 3100.5 | 3443.9 | 6.2331 | 0.009527 | 3062.0 | 3395.5 | 6.1179 |
| 650 | 0.015433 | 3251.6 | 3637.4 | 6.5229 | 0.012596 | 3221.0 | 3598.9 | 6.4058 | 0.010575 | 3189.8 | 3559.9 | 6.3010 |
| 700 | 0.016646 | 3361.3 | 3777.5 | 6.6707 | 0.013661 | 3335.8 | 3745.6 | 6.5606 | 0.011533 | 3309.8 | 3713.5 | 6.4631 |
| 800 | 0.018912 | 3574.3 | 4047.1 | 6.9345 | 0.015623 | 3555.5 | 4024.2 | 6.8332 | 0.013278 | 3536.7 | 4001.5 | 6.7450 |
| 900 | 0.021045 | 3783.0 | 4309.1 | 7.1680 | 0.017448 | 3768.5 | 4291.9 | 7.0718 | 0.014883 | 3754.0 | 4274.9 | 6.9386 |
| 1000 | 0.02310 | 3990.9 | 4568.5 | 7.3802 | 0.019196 | 3978.8 | 4554.7 | 7.2867 | 0.016410 | 3966.7 | 4541.1 | 7.2064 |
| 1100 | 0.02512 | 4200.2 | 4828.2 | 7.5765 | 0.020903 | 4189.2 | 4816.3 | 7.4845 | 0.017895 | 4178.3 | 4804.6 | 7.4037 |
| 1200 | 0.02711 | 4412.0 | 5089.9 | 7.7605 | 0.022589 | 4401.3 | 5079.0 | 7.6692 | 0.019360 | 4390.7 | 5068.3 | 7.5910 |
| 1300 | 0.02910 | 4626.9 | 5354.4 | 7.9342 | 0.024266 | 4616.0 | 5344.0 | 7.8432 | 0.020815 | 4605.1 | 5333.6 | 7.7653 |
|  | $P=40.0 \mathrm{MPa}$ |  |  |  | $P=50.0 \mathrm{MPa}$ |  |  |  | $P=60.0 \mathrm{MPa}$ |  |  |  |
| 375 | 0.0016407 | 1677.1 | 1742.8 | 3.8290 | 0.0015594 | 1638.6 | 1716.6 | 3.7639 | 0.0015028 | 1609.4 | 1699.5 | 3.7141 |
| 400 | 0.0019077 | 1854.6 | 1930.9 | 4.1135 | 0.0017309 | 1738.1 | 1874.6 | 4.0031 | 0.0016335 | 1745.4 | 1843.4 | 3.9318 |
| 425 | 0.002532 | 2096.9 | 2198.1 | 4.5029 | 0.002007 | 1959.7 | 2060.0 | 4.2734 | 0.0018165 | 1892.7 | 2001.7 | 4.1626 |
| 450 | 0.003693 | 2365.1 | 2512.8 | 4.9459 | 0.002486 | 2159.6 | 2284.0 | 4.5884 | 0.002085 | 2053.9 | 2179.0 | 4.4121 |
| 500 | 0.005622 | 2678.4 | 2903.3 | 5.4700 | 0.003892 | 2525.5 | 2720.1 | 5.1726 | 0.002956 | 2390.6 | 2567.9 | 4.9321 |
| 550 | 0.006984 | 2869.7 | 3149.1 | 5.7785 | 0.005118 | 2763.6 | 3019.5 | 5.5485 | 0.003956 | 2658.8 | 2896.2 | 5.3441 |
| 600 | 0.008094 | 3022.6 | 3346.4 | 6.0144 | 0.006112 | 2942.0 | 3247.6 | 5.8178 | 0.004834 | 2861.1 | 3151.2 | 5.6452 |
| 650 | 0.009063 | 3158.0 | 3520.6 | 6.2054 | 0.006966 | 3093.5 | 3441.8 | 6.0342 | 0.005595 | 3028.8 | 3364.5 | 5.8829 |
| 700 | 0.009941 | 3283.6 | 3681.2 | 6.3750 | 0.007727 | 3230.5 | 3616.8 | 6.2189 | 0.006272 | 3177.2 | 3553.5 | 6.0824 |
| 800 | 0.011523 | 3517.8 | 3978.7 | 6.6662 | 0.009076 | 3479.8 | 3933.6 | 6.5290 | 0.007459 | 3441.5 | 3889.1 | 6.4109 |
| 900 | 0.012962 | 3739.4 | 4257.9 | 6.9150 | 0.010283 | 3710.3 | 4224.4 | 6.7882 | 0.008508 | 3681.0 | 4191.5 | 6.6805 |
| 1000 | 0.014324 | 3954.6 | 4527.6 | 7.1356 | 0.011411 | 3930.5 | 4501.1 | 7.0146 | 0.009480 | 3906.4 | 4475.2 | 6.9127 |
| 1100 | 0.015642 | 4167.4 | 4793.1 | 7.3364 | 0.012496 | 4145.7 | 4770.5 | 7.2184 | 0.010409 | 4124.1 | 4748.6 | 7.1195 |
| 1200 | 0.016940 | 4380.1 | 5057.7 | 7.5224 | 0.013561 | 4359.1 | 5037.2 | 7.4058 | 0.011317 | 4338.2 | 5017.2 | 7.3083 |
| 1300 | 0.018229 | 4594.3 | 5323.5 | 7.6969 | 0.014616 | 4572.8 | 5303.6 | 7.5808 | 0.012215 | 4551.4 | 5284.3 | 7.4837 |

Average Bond Enthalpies ( $\mathrm{kJ} / \mathrm{mol}$ )

| Single Bonds |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}-\mathrm{H}$ | 413 | $\mathrm{N}-\mathrm{H}$ | 391 | $\mathrm{O}-\mathrm{H}$ | 463 | F-F | 155 |
| $\mathrm{C}-\mathrm{C}$ | 348 | $\mathrm{N}-\mathrm{N}$ | 163 | $\mathrm{O}-\mathrm{O}$ | 146 |  |  |
| $\mathrm{C}-\mathrm{N}$ | 293 | $\mathrm{N}-\mathrm{O}$ | 201 | $\mathrm{O}-\mathrm{F}$ | 190 | $\mathrm{Cl}-\mathrm{F}$ | 253 |
| $\mathrm{C}-\mathrm{O}$ | 358 | $\mathrm{N}-\mathrm{F}$ | 272 | $\mathrm{O}-\mathrm{Cl}$ | 203 | $\mathrm{Cl}-\mathrm{Cl}$ | 242 |
| $\mathrm{C}-\mathrm{F}$ | 485 | $\mathrm{N}-\mathrm{Cl}$ | 200 | $\mathrm{O}-\mathrm{I}$ | 234 |  |  |
| $\mathrm{C}-\mathrm{Cl}$ | 328 | $\mathrm{N}-\mathrm{Br}$ | 243 |  |  | $\mathrm{Br}-\mathrm{F}$ | 237 |
| $\mathrm{C}-\mathrm{Br}$ | 276 |  |  | $\mathrm{S}-\mathrm{H}$ | 339 | $\mathrm{Br}-\mathrm{Cl}$ | 218 |
| $\mathrm{C}-\mathrm{I}$ | 240 | $\mathrm{H}-\mathrm{H}$ | 436 | S-F | 327 | $\mathrm{Br}-\mathrm{Br}$ | 193 |
| $\mathrm{C}-\mathrm{S}$ | 259 | $\mathrm{H}-\mathrm{F}$ | 567 | $\mathrm{S}-\mathrm{Cl}$ | 253 |  |  |
|  |  | $\mathrm{H}-\mathrm{Cl}$ | 431 | $\mathrm{S}-\mathrm{Br}$ | 218 | $\mathrm{I}-\mathrm{Cl}$ | 208 |
| $\mathrm{Si}-\mathrm{H}$ | 323 | $\mathrm{H}-\mathrm{Br}$ | 366 | S-S | 266 | $\mathrm{I}-\mathrm{Br}$ | 175 |
| $\mathrm{Si}-\mathrm{Si}$ | 226 | H-I | 299 |  |  | I-I | 151 |
| $\mathrm{Si}-\mathrm{C}$ | 301 |  |  |  |  |  |  |
| $\mathrm{Si}-\mathrm{O}$ | 368 |  |  |  |  |  |  |
| Multiple Bonds |  |  |  |  |  |  |  |
| $\mathrm{C}=\mathrm{C}$ | 614 | $\mathrm{N}=\mathrm{N}$ | 418 | $\mathrm{O}_{2}$ | 495 |  |  |
| $\mathrm{C} \equiv \mathrm{C}$ | 839 | $\mathrm{N} \equiv \mathrm{N}$ | 941 |  |  |  |  |
| $\mathrm{C}=\mathrm{N}$ | 615 |  |  | $\mathrm{S}=\mathrm{O}$ | 523 |  |  |
| $\mathrm{C} \equiv \mathrm{N}$ | 891 |  |  | $\mathrm{S}=\mathrm{S}$ | 418 |  |  |
| $\mathrm{C}=\mathrm{O}$ | 799 |  |  |  |  |  |  |
| $\mathrm{C} \equiv \mathrm{O}$ | 1072 |  |  |  |  |  |  |

